
Accelerating
Software-Defined
Embedded Systems
Development

Solution Guide

QNX General Embedded Development Platform

In the era of the software-defined world, trends such as
urbanization, green energy, digitalization, and autono-
mous technologies are driving the demand for modern
and smart connected embedded systems. The rapid pace
of this technological innovation has transformed the land-
scape of software-defined systems, introducing new
opportunities and challenges across various industries.
From medical devices and robotics to energy systems
and beyond, the development of these systems requires
a robust and adaptable software stack. Additionally, some
of these next-generation smart devices and industrial au-
tomation systems have to be certified to stringent safety
and cybersecurity standards. This document explores the
essential components and frameworks needed to build
and maintain software-defined systems, highlighting the
critical role of the QNX General Embedded Development
Platform in reducing complexity in designing high-perfor-
mance software systems.

The convergence of enablers such as autonomous tech-
nologies, edge computing, and the Internet of Things has
resulted in embedded systems that are increasingly inter-
connected and intelligent. These systems are expected to
operate reliably in real-time environments while meeting
evolving functional safety and cybersecurity standards.
At the same time, the demand for development teams to
meet tight development timelines and stringent compli-
ance requirements without compromising on quality or
innovation continues to grow.

To address these challenges, the QNX General Embed-
ded Development Platform redefines how developers can
future-proof the design and deployment of modern em-
bedded systems. Engineered to address the demands of
scalability, safety, security, and real-time performance,
this platform is tailored for industries where reliability and
innovation are paramount.

Overview

02QNX General Embedded Development Platform

Introduction to QNX General Embedded
Development Platform
A typical embedded system consists of application-specific software running on a hardware target board. By mod-
ifying the software, other embedded applications can be developed for different markets using the same hardware.
In essence, the software modifications define the functionality of both the embedded system and its applications.

QNX General Embedded Development Platform

At its core, the QNX General Embedded Development
Platform integrates a modular and scalable foundation-
al software stack, anchored by a field-proven real-time
operating system with a suite of middleware and de-
velopment tools. Its modular and scalable architecture

supports high-performance communication frameworks,
edge-to-cloud integration, and AI optimization, enabling
seamless adaptability to diverse application needs. Al-
ready deployed in over 500 million mission-critical de-
vices globally, this platform empowers developers to meet

Figure 1: A reliable, comprehensive and adaptable platform to build safe, secure and high-performance software-defined embedded systems

03QNX General Embedded Development Platform

the highest standards of functional safety, cybersecurity,
and performance while accelerating time-to-market.

The QNX General Embedded Development Platform
foundational software also includes safety- and securi-
ty-certified components for simplifying the development
process to create performance-optimized, secure, and
mixed-criticality safety applications, using the latest mul-
ticore SoCs. This platform also enables streamlined CI/
CD and digital-twin based workflows that reduce overall
certification efforts, accelerating the implementation of
safe and secure software-defined systems for any in-
dustry vertical.

In the QNX General Embedded Development Platform,
thanks to the modular architecture of the QNX OS, the
QNX BSP helps to decouple the rest of the embedded sys-
tem from the hardware target board selected for building
the software-defined embedded system. Enabled with
BSP, the platform can be customized quickly with the re-
quired components to help develop the necessary user
applications based on reference solution(s). Even when
the hardware is not available, development with QNX soft-
ware can be started using VMWare / VirtualBox / QEMU
and other third-party-based virtual targets.

QNX General Embedded
Development Platform
Components
Platform components can be broadly classified into the
following categories:

•	 Software
•	 Hardware enablement
•	 Development tooling

Software

The software category consists of field-proven and
well-integrated components related to the platform’s cus-
tomizable foundational software stack, along with demo
user applications and sample reference solutions for rap-
id prototyping and simulation-first development workflow.
The QNX General Embedded Development Platform
adaptable software stack contains:

•	 QNX Board Support Packages
(BSPs) and drivers support
•	 Virtual targets based on VMWare /

VirtualBox / QEMU (Used when hardware
target board is not available)

•	 ARM and x86 SoCs based target boards
for Edge (Example: SoC vendor’s reference
boards, production boards)

•	 ARM and x86 SoCs based target boards for
Cloud (Example: AWS / Azure / Custom cloud
enabled digital-twin based target hardware)

•	 Microkernel based hard real-time QNX OS or
its safety variant, QNX OS for Safety (QOS)

•	 QNX Filesystem for Safety
•	 QNX Communications for Safety
•	 OS Services and Utilities
•	 Communication Frameworks, Databases, Filesystems
•	 QNX Hypervisor or QNX Hypervisor for Safety

Figure 2: QNX General Embedded Development Platform’s Software

04QNX General Embedded Development Platform

•	 Out-of-the-Box support for QNX guests
based on QNX OS or QNX OS for Safety

•	 Support for Android, Linux and QNX guests
•	 QNX Advanced Virtualization Frameworks (QAVF)

•	 Enables sharing of resources across host
and guest virtual machines, including:
•	 Audio sharing
•	 Camera sharing
•	 Filesystem sharing
•	 Graphics sharing
•	 Input sharing
•	 USB sharing
•	 VPU Sharing
•	 Virtual Socket
•	 Custom guest integration and optimization

•	 Sensor Framework
•	 Graphics Framework
•	 Security Framework
•	 Sound Framework
•	 Media Framework
•	 Containers
•	 Third-Party Ecosystem/Software
•	 Open-Source Software

Hardware enablement

Figure 3: QNX supported target platforms

The hardware enablement category consists of any ARM/
x86 target board that has an available QNX Board Support
Package (BSP), for edge or cloud (AWS / Azure) based
development. This category also includes QNX enabled
VMWare / virtualBox / QEMU and other third-party based
virtual targets that can be used for software development
when the hardware board is not available. New QNX BSPs
can be developed for supporting additional target boards.

Development tooling

The development tooling category contains QNX Tools,
certifications and support services that are needed for
customizing the platform to accelerate the development
and deployment of embedded systems for various indus-
try verticals.

Tools

•	 QNX Software Development Platform (SDP)
•	 QNX Tool Suite / QNX Momentics Integrated

Development Environment (IDE)
•	 Safety qualified toolchain

•	 QNX Toolkit for Microsoft Visual Studio Code
•	 Cloud Development and Security Tools
•	 GUI based Sound tools with dynamic visualization

Certifications

•	 Functional Safety – ISO 26262 ASIL D, IEC 61508 SIL 3,
IEC 62304 Class C, EN 50128 SIL 4*, EN 50657 SIL 4*

•	 Security – ISO / SAE 21434, FIPS 140-3,
ISO/IEC 15408, TISAX

•	 Quality Management – ISO 9001
•	 Open Standards – POSIX PSE54, FACE 3.1

*available through custom services

Support

•	 Standard and Long-Term Support
•	 Custom Services
•	 Incident Response
•	 Training
•	 Source Code Access
•	 Safety Consulting

Figure 4: QNX Development Tools, Certifications and Support Options

05QNX General Embedded Development Platform

QNX General Embedded
Development Platform
Foundational Software
Board Support Packages
and Drivers

QNX BSPs simplify the integration of QNX software with
your hardware by providing a hardware-specific software
abstraction layer. Each BSP is tailored to a specific archi-
tecture, board, or even board revision, handling essential
tasks like initialization and hardware preparation for sys-
tem operation.

BSPs define startup behaviors and include:

•	 Initial Program Loader (IPL) – Hardware-specific.
•	 Startup Code – Prepares the system environment.
•	 Utilities – Real-time clock, hardware

watchdog configuration etc.
•	 Device Drivers - Drivers for serial ports, Ethernet,

PCI servers, SPI, NOR, SATA, USB, etc.

The source code for most BSP components is included,
providing a reference model to write new /custom device
drivers or make changes to the IPL or startup code.

The QNX BSP library features extensive support for SoCs
and evaluation hardware from leading ARM and x86 man-
ufacturers. Supported GPUs include ARM Mali, Imagina-

tion PowerVR, Intel HD, VeriSilicon Vivante, etc.

QNX Standard Support is available for BSPs listed in the
QNX Software Center and some BSPs are acquired direct-
ly from the BSP supplier or board vendor. New BSPs are
regularly added, and custom BSP development is available
through QNX Professional Services.

Safety-Certified Microkernel-
Based Hard Real-Time
QNX OS/Hypervisor

Built with flexibility and longevity in mind, the latest QNX
Operating System and Hypervisor represent the most ad-
vanced offerings yet, designed to deliver cutting-edge
performance and reliability. While these versions show-
case the newest features and enhancements, access is
also provided to older versions to support legacy sys-
tems and ease transitions. This multi-version approach
allows evolution of software-defined embedded systems
at their own pace, with the option for source code access
on end-of-life products to ensure continued customiza-
tion and maintenance. This commitment ensures embed-
ded systems remain reliable, adaptable, and future-proof
throughout their lifecycle.

Figure 5: QNX Board Support Packages and Drivers

Figure 6: Microkernel based hard real-time QNX OS

06QNX General Embedded Development Platform

QNX Operating System

The QNX OS is the foundation for developing software for
high-performance Systems-on-a-Chip (SoCs) and those
embedded systems that run critical, real-time compute-in-
tensive software such as autonomous applications, sur-
gical or industrial robots. The QNX OS, a real-time oper-
ating system with our next-generation microkernel, has
been augmented to support the latest 64-bit ARM and
x86 hardware platforms. The QNX OS features advanced
microkernel built on the pillars of performance, scalability,
security, safety, and real-time execution.

Performance and real-time execution are central to the
design of the QNX OS. Its real-time determinism means
it can handle many time-critical tasks where predictabil-
ity, scalability, and reliability are necessary for mission-
and safety-critical applications. And its modular design
makes it more flexible than a traditional monolithic OS. Its
scaling capabilities meet the needs of high-performance,
compute-intensive system architectures powered by next
generation multicore silicon.

With its advanced microkernel architecture, QNX OS is safe
and secure by design, providing features that isolate and
protect critical processes. QNX OS comes with a suite of
security features including the latest access control mech-
anisms (e.g., security policies and permission controls), full
encryption support, secure filesystems, and more.

QNX OS Core Capabilities
Microkernel Architecture

This design isolates every application, driver, protocol
stack, and filesystem in its own address space, outside
the kernel. This means that a failed component won’t take
down other components or the kernel; it can be restarted
immediately with minimal impact on the rest of the system.
With a fault-tolerant and secure microkernel architecture,
QNX OS is the ideal OS for all projects because it enables
scaling of the underlying hardware (2-core SOC to 64-
core SOC). Its future-ready reliable design works across
all safety and non-safety related deeply embedded to
high-performance compute systems, without needing to
change the OS and with limited impact on system-level
performance.

High-Performance
Provides high overall OS throughput performance driven
by the next- generation microkernel and networking. This
enables development teams to make use of SoCs ranging
from 2 to 64 cores, maximizing full potential.

Seamless Scalability
Provides near-linear scalability as the number of cores
increases. This allows development teams to scale and
increase the workloads on SOCs with CPU cores ranging
from 2 to 64 cores as seamlessly as possible.

Figure 7: QNX Microkernel Architecture

07QNX General Embedded Development Platform

Hard Real-Time
Improves hard real-time capabilities. It is fully pre-emp-
tive with strict time constraints and guaranteed response
times, meaning it can fully monitor the relevant priority of
competing tasks and quickly schedules the required task.

Low Latency and Jitter
Offers low latency and jitter, essential for safety, mis-
sion-critical, and real-time systems that need determin-
istic, high-precision, and accurate responses.

System Analysis Toolkit (SAT)
Provides sophisticated tracing and profiling mechanisms
based on its advanced instrumented microkernel, allowing
execution monitoring in real time or offline. Since it works
at the operating system level, the System Analysis Toolkit
(SAT), unlike debuggers, can monitor applications without
having to modify them in any way.

The SAT allows real-time debugging to help pinpoint
deadlock and race conditions by showing what circum-
stances led to the problem. It also offers a nonintrusive
method of instrumenting the code to dynamically monitor
real-time system errors and help improve overall system
performance.

The QNX OS SAT consists of the following components:

•	 instrumented microkernel
•	 a small, highly efficient event-gathering module
•	 kernel buffer
•	 data-capture program (tracelogger)
•	 data interpreter (traceprinter)

System events can also be traced and analyzed under
the control of a GUI-based Integrated Development En-
vironment (IDE).

Unlike the SAT, debuggers lack the execution history es-
sential to solving the many complex problems involved in
application tuning.

A debugger can view a single process, while the SAT can
view all processes at the same time. Because it offers a
system-level view of the internal workings of the kernel,
the SAT can be used for performance analysis and optimi-

zation of large systems as well as a single process.
The SAT offers valuable information at all stages of a prod-
uct’s lifecycle, from prototyping to optimization to in-ser-
vice monitoring and field diagnostics.

QNX OS for Safety and Safety Add-Ons

Figure 8: QNX OS for Safety

QNX OS for Safety is a safety-certified operating system that
can meet requirements up to the highest levels of functional
safety. It is based on the QNX SDP and contains safety-cer-
tified variants of key components of the QNX OS, including
the microkernel, process manager and POSIX-compliant li-
braries, with support for multi-core processing.

QNX OS for Safety is certified as a Safety Element out of
Context (SEooC) to ISO 26262 ASIL D (automotive), IEC
61508 SIL 3 (industrial), and IEC 62304 Class C (medical),
EN 50128 SIL4 and EN 50657 SIL4 (railway - available
through custom services). It includes safety variants of
the system memory management unit manager (SMMU-
MAN for Safety), math libraries (libm), and security com-
ponents. It also includes a C++ library that is certified to
ISO 26262 ASIL B for the C++ templates and headers and
ISO 26262 ASIL D for the C++ runtime binaries. The safety
certification also includes qualification for the C and C++
toolchain to TCL3 and T3. Using these pre-certified prod-
ucts contributes to reducing the effort associated with
system-level safety certifications.

08QNX General Embedded Development Platform

Only a secure system can be a safe system. The QNX OS
for Safety provides a comprehensive, layered approach
to security.

This layered approach enables the implementation of only
the required security protocols that are needed to miti-
gate threats and harden the systems, including: granular
control of system privilege levels, encrypted and self-ver-
ifying filesystems implementing AES 256 encryption and
lockable encryption domains, secure logging of system
activities, heap, stack and memory protection, and secure
boot implementing TPM and TrustZone.

QNX Filesystem for Safety
The QNX Filesystem for Safety is a safety add-on. It is a
read-only filesystem that is designed to protect the in-
tegrity of filesystem data in an embedded system. It val-
idates and performs the essential safety checks on the
filesystem data. This solution provides POSIX ACL sup-
port, can run concurrently with other QNX filesystems
all with minimal impact on system performance. The QNX
Filesystem for Safety is certified to ISO 26262 ASIL B on
QNX OS for Safety.

QNX Communications for Safety
QNX Communications for Safety is a safety-add-on. It
encapsulates the data being exchanged and performs
essential safety checks to validate it at both ends.

This solution protects data communication from system-
atic software faults, random hardware faults and transient
faults, and helps in the automatic prevention of damages
from these failures, all with minimal impact on system per-
formance. QNX Communications for Safety is certified to
ISO 26262 ASIL D on QNX OS for Safety.

Figure 9: QNX Safety and Security

09QNX General Embedded Development Platform

OS Services and Utilities

Real-time and other mission-critical applications gener-
ally require a dependable form of Inter Process Commu-
nication (IPC), because the processes that make up such
applications are so strongly interrelated.

QNX OS is the first commercial operating system of its
kind to make use of message passing as the fundamen-
tal means of IPC. The OS owes much of its power, sim-
plicity, and elegance to the complete integration of the
message-passing method throughout the entire system.
The QNX microkernel uses kernel calls to support the fol-
lowing:

•	 threads
•	 message passing
•	 clocks
•	 timers
•	 interrupt handling
•	 semaphores
•	 mutual exclusion locks (mutexes)
•	 condition variables (condvars)
•	 barriers

The entire OS is built upon these calls. The OS is fully
preemptible, even while passing messages between pro-
cesses, it resumes the message pass where it left off be-
fore preemption. It acts as a kind of software bus that
lets you dynamically plug in/out OS modules whenever
they’re needed.

Communication Frameworks
QNX io-sock is a high-performance networking stack that
enables high-speed bus networks to transmit time-sen-
sitive sensor, audio and video content across different
high-performance compute nodes. High-level capabilities
include:

•	 Improved throughput and latency performance
especially on 1G and 10G channels

•	 IPv4/IPv6 multi-threaded network stack
•	 Unicast and multicast routing
•	 Packet Filtering
•	 VLAN and Network Bridging
•	 Wireless, Wi-Fi 6, USB and PCI

Ethernet driver support
•	 IPSec and IKE (Internet Key Exchange) support
•	 Stream Control Transmission Protocol (SCTP)
•	 Process and network interface isolation
•	 Common Address Redundancy Protocol (CARP)

OS Feature Highlights:
Kernel

•	 High-resolution software timers
•	 POSIX scheduling policies
•	 Fully preemptive priority-based scheduling
•	 Symmetric multiprocessing
•	 Up to 64 cores
•	 Up to 133 million threads on a system
•	 Up to 16 TB of RAM
•	 Safe and secure interrupt handling
•	 Scheduling policies
•	 POSIX Interprocess Communication (IPC)
•	 QNX IPC with limitless message sizes
•	 SMMU management
•	 Fast boot
•	 Many POSIX features

Security

•	 POSIX permissions
•	 POSIX Access Control Lists (ACL)
•	 Random service generator
•	 Fortified system functions

Figure 10: QNX OS Services and Utilities

10QNX General Embedded Development Platform

•	 Secure Process launcher
•	 Security policies
•	 Secure boot
•	 QNX Trusted Disk (QTD)
•	 Pathtrust
•	 Address Space Layout Randomization (ASLR)
•	 Process manager abilities
•	 Generic crypto device driver
•	 QNX Binary Security Check tool
•	 OpenSSL 3
•	 FIPS 140-2/3 Crypto Libraries

Filesystems

•	 SMBv3
•	 QNX Power Safe
•	 NFS
•	 Encrypted
•	 Squash
•	 Compressed

QNX Hypervisor (Support for
Android, Linux, and QNX Guests)

QNX Hypervisor is a microkernel-based hypervisor built
for creating and managing virtual machines and their
guests on embedded devices.

With the QNX Hypervisor, developers can consolidate
multiple similar or heterogeneous operating systems onto
a single system on a chip (SoC) to reduce the cost, size,
weight, and power consumption of their systems while
separating and isolating general-purpose and safety crit-
ical operating systems and applications. QNX Hypervisor
inherits the reliability, performance, and security char-
acteristics of the QNX OS, which already ships in hun-
dreds of millions of critical embedded systems world-
wide. The QNX Hypervisor follows industry standards
such as VirtIO and Android Automotive HAL, minimizing
the modifications needed to implement Android™ and/or
Linux® guests in its virtual machines and is optimized for
a number of silicon vendor SoCs. Standards-based device
sharing, and flexible virtual machine configuration ensure
that the QNX Hypervisor environment can be scaled up
for high-performance computing and complex system/
domain controllers, as well as scaled down for more re-
source-constrained and less complex embedded systems
and controllers.

A virtual device developer’s toolkit, containing an API ref-
erence and a user’s guide with code samples, is available
to extend the hypervisor’s virtual machines with custom
virtual devices, including para-virtualized devices de-
signed and built to the VirtIO standards.

Figure 11: QNX Hypervisor

11QNX General Embedded Development Platform

QNX Hypervisor for Safety

QNX Hypervisor for Safety supports virtualized systems
for functional safety.

QNX Hypervisor for Safety is certified to ISO 26262 ASIL
D, IEC 61508 at SIL 3, IEC 62304 Class C, EN 51028 SIL 4,
and EN 50657 SIL 4. This product is foundational for de-
veloping safety-critical virtual machine systems requiring
up to this level safety rating. By using the real-time QNX
Hypervisor for Safety, embedded developers can consol-
idate multiple operating systems onto a single compute
platform or system-on-a-chip (SoC) to reduce the cost,
size, weight, and power consumption of their system de-
signs while enforcing clean separation and isolation of
safety-critical and general-purpose applications and op-
erating systems. Note that QNX OS for Safety can also be
used as a powerful real-time, pre-certified safety guest
managed by the QNX Hypervisor for Safety.

The virtual device developer’s toolkit, with code samples,
can be used to extend the hypervisor’s virtual machines
with VirtIO based custom virtual devices designed to run
in safety hypervisor environments.

QNX Advanced Virtualization
Frameworks (QAVF)

The QNX Advanced Virtualization Frameworks are de-
signed to work with the QNX Hypervisor product family
and are offered as middleware extensions to QNX Hy-
pervisor and QNX Hypervisor for Safety products. These
frameworks enable sharing of devices among the virtu-
al machines and the hypervisor host environment. Ad-
vanced device sharing components include:

•	 display sharing between Android,
Linux and QNX systems

•	 graphics surface sharing
•	 video stream sharing, camera sharing
•	 audio sharing for playback and capture
•	 audio management
•	 socket communications, filesystems,

and touchscreen support

For example, QAVF enable a guest OS such as Android/
Linux/QNX, to share device access with other operating
systems in a virtualized environment.

Figure 12: QNX Hypervisor for Safety

Figure 13: QNX Hypervisor for Safety

Figure 14: QNX Advanced Virtualization Frameworks

12QNX General Embedded Development Platform

By following standards such as VirtIO, an Android/Li-
nux/QNX guest can run unmodified and share underlying
hardware and software services such as graphic displays,
acoustic environments, touchscreens, media storage de-
vices, video streams and cameras.

Of importance, QAVF runs outside of the guest. This per-
mits not only the sharing of devices while the guest virtual
machine is active, but also user interaction with cameras,
displays, audio and input devices while the guest is still
booting.

Notable features of QNX Advanced Virtualization Frame-
works include:

•	 Extensive optimized support for the
VirtIO standard as well as custom silicon
vendor device sharing interface.

•	 Supported backend services designed to run in
the QNX Hypervisor host domain, thus providing

high performance while removing the need for
a special Service OS or Domain0 guest.

•	 Frameworks that use sharing, communication,
and isolation techniques that are the best fit for
each virtualization requirement. This can involve
a combination of VirtIO standards, agent/client
software, and custom-built virtual devices.

•	 Frameworks that are modular and allow for
partitioning with some software running in the
Hypervisor host and some in guest VMs. This is
especially important for graphics sharing. For
example, some digital cockpit designs require a
separate QNX guest for safety-certified instrument
cluster that share the same GPU with Android
that controls the infotainment environment.

•	 Supported backend services in the host to enable
achieving key performance indicators (KPIs)
such as fast boot, time to play audio, and video
streaming, more easily than if those services were
available only after the guest starts running.

•	 A path to functional safety is considered in
the design for each and every framework.

Sensor Framework

The QNX Sensor Framework provides a set of technolo-
gies for multi-sensor data acquisition (radar, lidar, camera
and others), distributed processing and vehicle network-
ing. The QNX Sensor Framework is intended for use in

Technology Standard Guest Support

Shared GPU & Display Virtio 1.2.5.7
GPU Device Android & Linux

Shared graphic surface Android guest dis-
play in QNX host Android & Linux

Virtual Socket Virtio 1.2.5.10
socket Device Android & Linux

Shared Input Virtio 1.2.5.8
GPU Device Android & Linux

Shared Audio Virtio 1.2.5.15
Sound Device Android & Linux

Shared video
and camera

Latest technical
committee draft

Android HAL spe-
cific (Linux requires

integration)

Shared USB
USB port shared

by guest or
hypervisor host

Android & Linux

Sensor Sharing Android HAL Android

Shared Filesystem Virtio 1.2.5.11 File
System Device Android & Linux

QNX guest graph-
ics sharing QNX guest graphics QNX

Virtual Bluetooth Bluetooth Device
(media, HandsFree)

Android (Linux re-
quires integration)

Figure 15: QNX Sensor Framework

Table 1: QAVF Guest Support

13QNX General Embedded Development Platform

a variety of advanced driver assistance systems (ADAS)
and automated driving applications, as well as other em-
bedded applications with sensor technology, including:

•	 Informational ADAS systems such as
surround view and forward-facing, machine
vision processing systems with perception
capabilities for industrial automation

•	 Active safety systems such as autonomous
emergency braking systems

•	 Consolidated CPU / domain controllers
that provide active safety functions

•	 Autonomous driving and robotic systems,
including smart sensor control systems, and
centralized high-performance compute nodes

Graphics Framework

QNX Screen is a middleware extension and a graphics
framework that provides all the functionality necessary
to develop interactive user experiences. It is a composit-
ing windowing system that can composite graphics from
several different rendering technologies.

QNX Screen allows developers to easily create simple
to advanced GUI interfaces for embedded applications
using industry-standard UI development tools and tech-
nologies. It also enables developers to create separate
windows for the output of each rendering technology
(e.g., HTML5, Qt, Video, OpenGL ES, Vulkan, GTK, Unity
3D etc.) so that each window can be transformed (e.g.,
scaling, translation, rotation, alpha blending, etc.) to build
the final scene for display.

Figure 16: QNX Sensor Framework Architecture Overview

Figure 17: QNX Graphics Framework

14QNX General Embedded Development Platform

Security Framework

With more than 500 patents covering Elliptic Curve Cryp-
tography (ECC), the QNX Security Framework provides
device security, anti-counterfeiting, and product authen-
tication to deliver end-to-end security with managed pub-
lic key infrastructure, quantum resistant code signing and
other applied FIPS validated cryptography and key man-
agement solutions.

Sound Framework

QNX Sound is a comprehensive sound solution that pro-
vides creative freedom for audio and acoustics profes-
sionals who are building and deploying software-defined

audio solutions. Advanced graphical design, tuning and
development tools are provided supporting leading auto-
motive SoC hardware that include both application pro-
cessor and digital signal processing (DSP).

Low-latency runtime modules consist of voice process-
ing, sound synthesis, noise reduction, in-car communica-
tions, chimes and safety alerts, audio signal processing,
and signal flows.

The runtime environment also adds audio policy manage-
ment and integration with virtual environments (hypervi-
sor) including Android, Linux and QNX guests. In addition,
QNX Sound supports extensions for third party media pro-
cessing and value-add technology organizations allowing
OEMs to meet continually evolving automotive business
challenges. Cloud and digital-twin based multi-channel
system-wide audio application development is supported,
including rapid testing and deployment to the embedded
edge devices.

QNX Sound also includes a graphical host-based tool
(QNX® LiveAMP) that enables real-time adjustment of
system parameters, signal streaming, injection at multi-
ple tap-points in the system and includes real-time spec-
trum and waveform displays. Additionally, QNX LiveAMP
offers offline sound design capabilities and accelerates
real-time tuning, diagnosis, configuration, deployment,
system-wide audio management and analysis of acous-
tic/audio applications.

QNX Sound provides a path to consolidating acoustics as
part of centralized / advanced computing architectures and
accelerates the implementation and deployment of soft-
ware-defined audio solutions for smart embedded systems.

Figure 18: QNX Security Framework

Figure 19: QNX Sound Framework

15QNX General Embedded Development Platform

Media Framework

QNX Multimedia is a media framework middleware ex-
tension that enables media-rich, high-quality playback,
encoding and streaming of audio and video files for QNX
embedded systems.

The high-level capabilities of this framework include:

•	 Media playback from file or streamed content
•	 Support for hardware-accelerated

audio and video CODECs
•	 OpenMAX AL
•	 Media recording and streaming of

content to a receiving endpoint
•	 QNX Multimedia Playback
•	 QNX Multimedia Encode and Casting

Containers

Powered by QNX microkernel technology, QNX Contain-
ers are lightweight environments that enable efficient
deployment of embedded system applications and their
dependencies to QNX target device(s), ensuring isolation,
security, portability, and scalability.

Whether it is the development of medical robots that re-
quire enhanced security and reliability of mixed-criticality
safety applications using latest multi-core SoCs, or cre-
ating an application for next-generation industrial con-
trol systems that can be cost-effectively ported across
product lines, QNX Containers provide a standards-based
solution for management and control of these runtime
container environments. It implements the most popular
standards-based container solutions:

•	 OCI compliant (Open Container Initiative).
•	 Kubernetes-based toolchains for creation,

deployment and management.
•	 Docker (industry standard) repositories for remote

storage and retrieval. Local storage is also supported.

QNX Container runtime environment follows the OS re-
strictions and security features on networking, filesys-
tems, devices, memory, communications, access control
and CPU. These restrictions set provides highly secure
and isolated embedded containers while still maintaining
the high performance and hard real time nature of the
QNX operating system.

Figure 20: QNX Media Framework

Figure 21: Multimedia Encode and Casting

Figure 22: QNX Containers

16QNX General Embedded Development Platform

QNX Containers isolate ML (Machine learning) capable
applications from the rest of the system and allows for a
cloud-first and/or cloud-centric development approach
and digital-twin workflows. This accelerated develop-
ment approach enables portability between targets, in-
tegration into automated pipelines for development and
test, collaboration across geographical regions, and scal-
ability using cloud resources. The software can be made
more modular and extendable for easily adapting the
embedded devices to evolving needs and technologies
without compromising performance or security.
The ability to quickly launch QNX Containers based dig-
ital-twins at scale in the cloud for development, testing,
staging, and deployment enhances overall productivity
and code quality.

Additionally, existing OCI and Kubernetes based orches-
tration infrastructures and tools can be used to streamline
the process of managing updates to ensure software-de-
fined embedded systems remain up-to-date and secure.

Third-Party Ecosystem

For decades, QNX has worked with a network of collabo-
rative organizations to provide complementary technolo-
gies and broaden QNX support across industries and re-
gions. These important relationships have enhanced our
ability to provide the foundational software, middleware,
and services behind the world’s most critical embedded
systems.

Several QNX based third-party complementary solutions
are available that can be used in QNX General Embedded
Development Platform for accelerating your development
and deployment of smart embedded systems. For exam-
ple, support for middleware partner solutions include:

•	 Communication Protocols: Data Distribution
Service (DDS), Time Sensitive Networking (TSN),
Profinet, Profisafe EtherCAT, Fail Safe over Ethercat
(FSoE), CANOpen Safety, Zenoh, Modbus

•	 Human Machine Interface (HMI)
•	 Embedded Database
•	 Server Message Block (SMB 3), etc.

Figure 23: Accelerated cloud-first development workflows

Figure 24: Integrated Third-Party Software

17QNX General Embedded Development Platform

Open-Source Software Support

QNX supports open standards and there are several open-
source software (OSS) packages available for building in-
novative software-defined systems. Developers can ac-
cess these open-source ports through compiled binaries,
delivered as open-source add-on packages from QNX
Software Center, or source code upstreamed to original
project repository or hosted in a public QNX repository.
Examples of open-source integrated software with QNX
General Embedded Development Platform, include:

QNX General Embedded
Development Platform
Development Tooling
Tools Certifications and Support

QNX General Embedded Development Platform’s devel-
opment tooling contains tools, certification artifacts, and
flexible support and training options for accelerated de-
velopment of embedded systems that have to address
dynamic product requirements, driven by the ongoing
demand for new features and the need to comply with
ever-evolving regulatory standards.

Development Tooling: Tools

QNX Software Development Platform (SDP)
QNX SDP provides the core development tools and run-
time components required to build QNX-based products.
Also, the well-integrated, high-performance QNX General
Embedded Development Platform’s foundational software
stack is built using these field-proven runtime software
components from the QNX SDP. It contains more than
32,000 binaries, libraries, scripts, and configuration files,
and 14,000 pages of documentation.

QNX SDP incorporates security and safety-by-design and
is compatible with standard tools, libraries, and frame-
works. It consists of three primary components:

Figure 25: Open-Source Software Support

Cairo dlt-daemon EmulationStation

Fast-DDS gtsam Protobuf

grpc gtk Gflags

jsoncpp weston C-ares

libmodbus aws-crt-app Re2

opencv METIS Googletest

pixman OpenBLAS Mosquito

sqlite3 SuiteSparse Azure-iot-sdk-c

csmith Glog Pytorch

tinyxml2 Tensorflow ROS 2 Humble

rust farmhash Etc.

Figure 26: Development Tools, Certification Artifacts and Support Models

18QNX General Embedded Development Platform

•	 QNX Operating System (OS) components
•	 QNX Tool Suite
•	 QNX Software Center

QNX Tool Suite

The QNX Tool Suite is comprised of the
following components:

•	 QNX Momentics IDE
•	 QNX® Toolkit for Microsoft Visual Studio Code
•	 QNX® Command Line Tools

QNX Momentics IDE is an industry standard Integrated
Development Environment (IDE) that helps to quickly set
up the project, select a programming language, choose a
target processor, compile the code, connect to the target,
transfer the application to the target, then run, debug,
profile and fine-tune the application. This tool suite pro-
vides the flexibility to use the IDE as primary development
interface, or to use command-line tools (compiler, linker,
debugger) to do the development.

The Momentics IDE can be used to modify and configure
QNX runtime software, and to develop applications to run
on the QNX OS. It includes compilers, debuggers, librar-
ies, header files, utilities, sample source code, test suites,
performance optimization tools, etc., within an integrat-
ed development environment that is based on the open
Eclipse IDE framework.

Additionally, QNX Momentics IDE provides rich GUI based
tools, including:

•	 Memory Analysis and several Valgrind tools to find
memory problems such as leaks and corruption,
and to measure memory usage of programs.

•	 Application Profiler, Valgrind and Cachegrind
tools, which measure the performance
of programs running on targets.

•	 System Information and QNX System Profiler tools
to understand process and thread interaction on the
target, reduce application and system startup times,
and debug deadlock and improper CPU usage levels.

It also lets you use commercial test frameworks to write
unit tests and then execute them by launching a project.
While running a test program, the Code Coverage tool can
be used to determine how much of the code is exercised
(covered) by the tests. The test frameworks supported are:

•	 Boost.Test Library
•	 GoogleTest Framework
•	 Qt Testing Framework

QNX Toolkit for Microsoft Visual Studio Code is also avail-
able which can be used instead of the Eclipse based Mo-
mentics IDE. The Microsoft Visual Studio Code (VS Code)
is a host-based code editor optimized for building and de-
bugging modern applications and includes the following:

•	 Thousands of third-party extensions
•	 Advanced Git integration; cloud

and container workflows
•	 Intellisense smart code completion and

dynamic syntax error Highlighting

Figure 27: Development Tooling - Tools

Figure 28: QNX System Profiler Tools

19QNX General Embedded Development Platform

The QNX Toolkit for Microsoft Visual Studio Code is a
QNX extension that is available on the Visual Studio Mar-
ketplace, providing an alternative development environ-
ment to the QNX Momentics IDE and includes support for
QNX-specific functions such as:

•	 QNX System Information
•	 QNX System Profiler
•	 QNX Target Management

The QNX Command Line Tools component is a compre-
hensive set of development utilities to create and manage
executables, object files, libraries, and other operations
such as system profiling and debugging capabilities.

The QNX Tool Suite also supports QNX Accelerate ini-
tiative. QNX Accelerate enables access to AWS or Mic-
rosoft Azure cloud-based targets, running foundational
QNX OS/Hypervisor software, including safety-certified
variant of the software. The same QNX Tool Suite can be
used for both the cloud and edge hardware target boards.
The developers can quickly innovate and collaborate on
safety and non-safety projects using cloud instances of
QNX software that offer binary parity, ensuring that the
code will work as intended on the embedded target board.

QNX Software Center

The QNX Software Center is a software delivery tool used
to manage discovery, delivery, and dependencies of QNX
development products in a centralized fashion. With the
QNX Software Center, QNX developers are proactively
alerted when relevant security updates, patches, and new
product releases are posted, or updates related to QNX
product licensing arise. The developers can also quickly
export their product development environment, saving
time and effort required to install the tools and working
configuration for additional team members.

Digitally signed software delivery associated with the
QNX Software Center is designed to ensure the integrity
of software packages. QNX Software Center also pro-
vides enhanced artifacts to assist developers with com-
pliance as it pertains to open-source licensing and QNX
runtime licensing.

Development Tooling: Certifications

Safety certificate artifacts related to the pre-certified
microkernel based QNX OS for safety, QNX Hypervisor
for Safety, several safety certified middleware software
components along with pre-qualified compiler toolchains
are provided to accelerate the overall certification of safe-
ty-critical embedded systems, for various industries.

Figure 29: Development Tooling – Certification Artifacts

Figure 30: IEC 61508 - a generic functional safety standard

20QNX General Embedded Development Platform

Development Tooling: Support & Training

The QNX Support team consists of developers, engineers,
and architects with diverse skill sets who not only provide
customer support but also work on QNX core products.
Various support options are available through a dedicated
online portal, person-to-person help lines, a community
portal and QNX online knowledge base. Long-term sup-
port options are available for products that have extended
product lifecycles beyond 10 or more years.

The QNX team also offers customized professional ser-
vices to bring safe and reliable products to market on time,
on budget and with excellent quality and has decades of
experience successfully delivering embedded systems
for organizations in multiple industries. Flexible engage-
ment models are available based on time-and-materials
or fixed-cost, and provide the options of either remote
delivery or on-site consulting.

Custom software development services are offered across
a range of embedded systems in automotive, medical, ro-
botics, industrial automation, defense and aerospace and
other industry verticals.

Having certified QNX products to ISO 26262 (ASIL D), IEC
62304 (Class C) and IEC 61508 (SIL 3) with a 100 percent
success rate, safety services are also offered to reduce
risk and streamline the development of safety-certified
embedded products.

Additionally, QNX training courses are available. Hosted
on-or off-site, these are hands-on and instructor-led us-
ing real-world examples to give any development team the
jumpstart needed in QNX best practices.

For more information about the components of the QNX
General Embedded Development Platform and its releas-
es, please reach out to your QNX representative.

Figure 31: Development Tooling – Support and Training Options

Figure 32: QNX Safety Services for successful product launches

21QNX General Embedded Development Platform

QNX, a division of BlackBerry Limited, enhances the hu-
man experience and amplifies technology-driven indus-
tries, providing a trusted foundation for software-defined
businesses to thrive. The business leads the way in de-
livering safe and secure operating systems, hypervisors,
middleware, solutions, and development tools, along with
support and services delivered by trusted embedded
software experts. QNX® technology has been deployed
in the world’s most critical embedded systems, including
more than 255 million vehicles on the road today. QNX®
software is trusted across industries including automo-
tive, medical devices, industrial controls, robotics, com-
mercial vehicles, rail, and aerospace and defense. Found-
ed in 1980, QNX is headquartered in Ottawa, Canada.

Learn more at qnx.com

©2025 BlackBerry Limited. Trademarks, including but not limited to

BLACKBERRY and EMBLEM Design, QNX and the QNX logo design are

the trademarks or registered trademarks of BlackBerry Limited, and the

exclusive rights to such trademarks are expressly reserved. All other

trademarks are the property of their respective owners. BlackBerry is

not responsible for any third-party products or services.

About QNX

February 2025

https://blackberry.qnx.com/en

